Using GPS to Determine Position Error Corrections

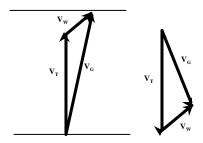
Purpose

- To describe a pitot static Flight Test Technique
 - ~ review earlier approaches to using GPS
 - ~ explain limitations of earlier methods
 - ${\scriptstyle \sim}\,$ show how limitations are alleviated
- To describe the pros and cons of the proposed FTT
- To show test results that validate the proposed method
 - ~ compare GPS results to traditional methods

Why use GPS for PEC?

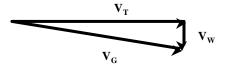
- The attraction
 - ~ no aircraft modification required
 - » no trailing cone or aircraft plumbing mod
 - » no flight test boom
 - ~ no limitation on speed or altitude
 - » can be done down to near stall
 - » any altitude
 - ~ easy data reduction
 - » no correlation with pace aircraft, ground radar, or other references required

The Basic Idea


- Using the precision of GPS
 - \sim accurate ground speed cheaply and easily obtained in any aircraft
 - \sim get true airspeed from ground speed as in the traditional ground course FTT
 - » requires negating the effect of wind
 - ~ with true airspeed, can obtain speed position error correction (DVpc)

$$(Vi + DVic + DVpc + DVc)/s^{1/2} = Vtrue$$

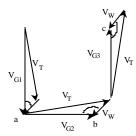
~ note: still requires calibrated (preferably sensitive) airspeed indicator


Traditional Ground Course

- To remove the effect of wind
 - ~ fly a heading directly between two ground markers, allowing the aircraft to drift
 - ~ repeat 1800 opposite heading
 - ~ use distance/time to get component of ground speed
 - ~ average the two ground speeds

- Do the same as traditional ground course method
 - ~ but must fly directly into and away from the wind
 - \sim if not, no way to determine the components of ground speed
 - » unknown wind gives unknown contribution to Vg
- Practical problem
 - ~ determining wind direction
 - ~ done by flying until heading = track
 - ~ not sufficiently accurate for PEC determination

- Same as method 1, but
 - ~ fly directly perpendicular to the wind
 - \sim use average ground speeds and drift angle to solve for Vtrue

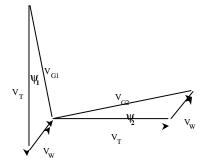

- Same problem as method 1
 - ~ if not directly perpendicular to the wind
 - » unknown effect on ground speed

- Same as traditional ground course method
 - ~ fly directly towards a GPS waypoint 8,000 nm away
 - ~ determine ground speed by timing GPS range changes
 - » this gives normal component of ground speed
 - no crab effect with remote waypoint
 - » average both towards and away components
- Practical problems
 - ~ Update of range on handheld GPS units is from 1 to 3 second interval
 - » okay only for range intervals that result in long times relative to timing errors

- Same as traditional ground course method
 - ~ fly true north or south
 - ~ determine ground speed by timing GPS latitude changes
 - » hack watch when whole latitude "rolls over"
 - minimizes update rate problems associated with range to a waypoint
 - » reverse course and repeat
- Practical problems
 - ~ minimal problems for low speed data points
 - ~ higher speeds requires longer runs, larger times
 - » possible wind change over large distances

- Horseshoe track method (*Kitplanes*, Feb 95)
 - ~ fly three legs with each perpendicular ground tracks, noting GPS ground speed on each
 - ~ determine true airspeed by solving three equations in three unknowns
- Practical problem
 - ~ only problem is the need to fly close to the ground, tracking perpendicular ground references

- · Horseshoe track method
 - ~ fly three legs with each perpendicular tracks, noting GPS ground speed on each
 - ~ determine true airspeed by solving three equations in three unknowns

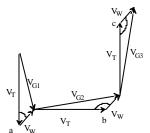

Old GPS Method 5

• Solving three equations:

True airspeed:
$$V_T = \frac{1}{2} \sqrt{\left(V_1^2 + V_2^2 + V_3^2 + V_1^2 \times \left(\frac{V_3^2}{V_2^2}\right)\right)}$$
Wind velocity $V_W = \sqrt{\left(\frac{V_1 - V_3}{2}\right)^2 + \left(\frac{V_2 - V_1 \times V_3/V_2}{2}\right)^2}$
Wind direction $\mathbf{y}_W = \tan^{-1} \frac{\left(V_2 - V_1 \times V_3/V_2\right)}{\left(V_1 - V_3\right)}$

- Almost all GPS units show both ground speed and ground track at the same time
- Using more information from accurate GPS
 - ~ less time spent taking data (more data/lb)
 - ~ less opportunity for pilot to be off condition
- Method
 - ~ fly two perpendicular headings
 - ~ record ground speed and track
 - ~ allows solving for wind direction, speed, and true airspeed

- If we know Vg₁ and Vg₂ and track angles y₁ and y₁
 - ~ Then we can write two equations in two unknowns, Vt and Vw
 - ~ With Vt and Vw we can also solve for wind direction

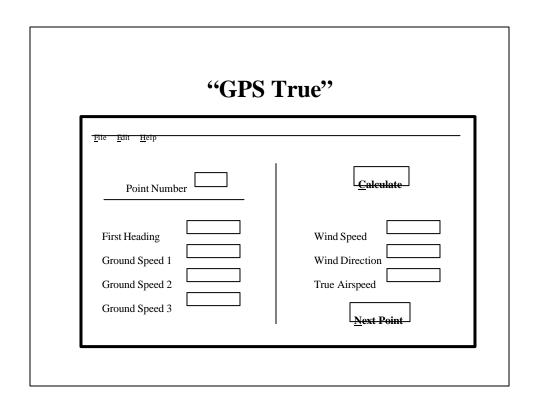

 Solving the two equations for the two leg speed and track method:

True airspeed
$$V_{T} = \frac{V_{G_{2}}^{2} - V_{G_{1}}^{2}}{V_{G_{2}} \cos(\mathbf{j}_{2}) - V_{G_{1}} \cos(\mathbf{j}_{1})}$$
Wind velocity $V_{W} = \left[V_{G_{1}}^{2} + V_{T}^{2} - 2V_{T}V_{G_{1}} \cos(\mathbf{j}_{1})\right]^{1/2}$
Wind direction $\mathbf{y}_{W} = \sin^{-1}\left[\frac{V_{G_{1}}}{V_{W}}\sin(\mathbf{j}_{1})\right]$

- Practical problem
 - ~ accuracy and resolution of aircraft heading
 - ~ leads to large scatter in results
 - $\hspace{-1mm} \hspace{-1mm} \hspace{-1$
- Conclusion
 - ~ unsuitable for PEC

Proposed Method

- · Horseshoe heading method
 - ~ fly three legs with each perpendicular headings, noting GPS ground speed on each
 - \sim determine true air speed by solving three equations in three unknowns


Angle $a = \Psi$ Angle $b = 90 + \Psi$ Angle $c = 180 - \Psi$

Equations

• Solving the three equations for the horseshoe heading method:

Software

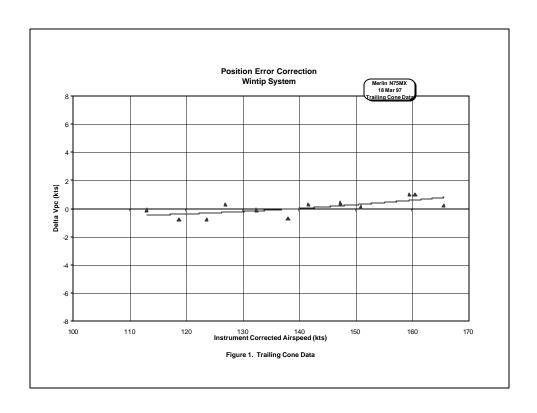
- "GPS True"
 - ~ Windows 95 program
 - » available on http://www.ntps.com
 - ~ Inputs
 - » Initial heading
 - » V_{G1} , V_{G2} , and V_{G3}
 - ~ Assumptions
 - » left turns between stable points
 - » indicated speed, altitude, wind speed & direction, and temperature constant on all three points
 - ~ Output
 - » wind speed & direction, true airspeed
- Excel spreadsheet also available

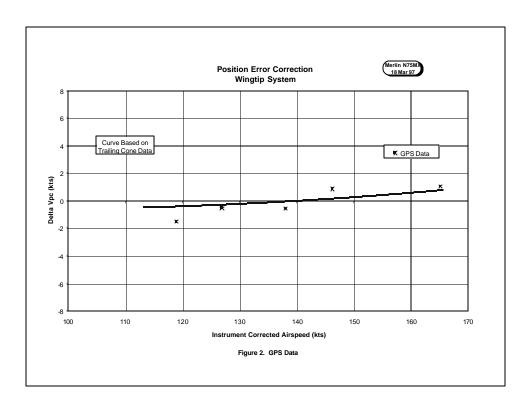
Excel Spreadsheet

		Heading	Vg1	Vg2	Vg3	Wind dir	Vwind	Vtrue GPS
	System	(deg mag)	(kts)	(kts)	(kts)	(deg)	(kts)	(kts)
1	Copilot	180	107.3	93.2	93.2	45	10.0	100.0
2	Duchess	270	126.0	143.0	138.0	332	12.9	131.5
3	Duchess	180	143.0	138.0	127.0	341	8.5	135.0
4	Duchess	90	138.0	127.0	126.0	310	7.8	131.9
5	Duchess	360	127.0	126.0	143.0	312	12.0	134.7
6	Duchess	270	135.0	152.0	143.0	344	14.2	138.3

• available on http://www.ntps.com

Validation Test


- The proposed FTT and data reduction were tried and the results compared to truth data
 - ~ aircraft: SW3 Merlin
 - » calibrated instruments
 - ~ GPS unit: Garmin 95
 - ~ truth data: trailing cone and Kiel tube
 - » truth data results: s = 0.384 kts from smooth curve fit
- The trial was conducted in conjunction with a two week introductory course on flight testing CAFB Cold Lake, Canada


Winds During the Trial

- The points were spread out over 3 sorties and nearly 2 hours
- Reduction of GPS data gave the following winds:

1	Wind Speed 17.4	Wind Direction 283	Approx. Time of Day 9:30
2	15.5	286	9:40
3	13.5	285	10:15
4	12.5	286	11:00
5	1.0	120	11:10
6	11.3	252	11:00

• Point #5 was eliminated due to the unreasonable winds and unlikely deviation of PEC compared to other points

Differential GPS?

- Trials were done with civilian code GPS
- Differential GPS or "P" codes would significantly improve accuracy
 - ~ but accuracy of position
 - ~ not necessarily accuracy of ground speed
- Most errors result in a bias that does not rapidly change with time
 - ~ atmospheric effects
 - ~ DOP
 - ~ military dithering
- GPS speed
 - ~ if time differentiated position, unaffected by a constant bias
 - ~ if doppler, unaffected by position errors

Conclusions

- "Horseshoe heading" method works well
- Generally excellent correlation
 - \sim s of trailing cone data from best fit curve = 0.38 kts
 - \sim s of trailing GPS data from the same curve = 0.53 kts
 - \sim all ground course methods assume zero error in total pressure measurement
- Proposed method should be applicable to a wide variety of aircraft
 - ~ successfully used on
 - » several light aircraft
 - » Merlin, MB-326 (~0.6 M), C-130, SK-35 (~.9 M)